

Synergies in offshore energy: a roadmap for the Danish sector

Matteo D'Andrea, Russell McKenna (University of Aberdeen)

Mario Garzón González (Technical University of Denmark)

21st April 2021

Agenda

- Introduction
- Methodology
- Results & Discussion

Introduction

Project aim

- Exploit synergies between the oil & gas sector and the offshore renewable energy to reduce :
 - CO2 emissions during the oil & gas platforms' lifetime.
 - the economic and environmental impact of decommissioning oil & gas platforms by providing new uses for the infrastructures.
- Develop a roadmap for the Danish offshore O&G sector, which highlights the locations and timing of the strongest synergies and provides concrete recommendations in terms of how to exploit these.

Scenarios

• Electrification and Repurposing : The model can electrificy the platforms and further repurpose the existing decommisioned infrastructure.

Area of interest

Methodology

Modelling Assumptions

- Whole system **cost minimisation**, including:
 - Investment/decommissioning in new/existing plants
 - Operation and costs of plants
- Planned developments in offshore wind are considered.
- Long term modelling horizon to 2050 with 6 modelling years from 2025.
- Perspective of the system planner, not the individual operators
- The Natural Gas prices reflect the market price cost; the development towards 2050 is based on a study from DEA.
- The CO2 tax development is based on the Balmorel model.

Hydrogen Production

- Hydrogen as a commodity is not implemented in the model.
- We included an **electricity demand** for the **decarbonization** of the **transport sector**.
- The model can **allocate** this **demand** between **all countries** included in the model (see figure).
 - It chooses the **cheapest regions** based on the electricity price.
 - The maximum demand allocation in each region is limited.
- When the **demand** is **allocated** on the **platform**, it is considered as the **input electricity** of the **electrolyser**.
- **Demand** for **hydrogen** across all these countries **increases** towards **2050**.
- The allocation of the hydrogen production is only optimum in this larger context (i.e. not just Danish O&G).

Repurposing Costs

For each cluster the repurposing costs are assumed as the following:

- The wells, the jackets, the pipelines and the subsea structure can be used as they are. The decommissioning costs of these structures are saved.
- 50 %^[a] of the platforms can be renovated with a new topside to host the hydrogen plant. For these platforms, the old topside is decommissioned with a cost about 30%^[b] of the full decommissioning cost.
- The new topside has the same weight of the old one and costs 40 €/Kg ^[c].

Scenarios

Main scenarios

- Decommissioning (BAU) : Platforms are decommissioned according to the timeline.
- Electrification and repurpose (E&R): Platforms are electrified and the existing infrastructure is repurposed for alternative uses.

Sensitivity Analysis scenarios

The sensitivity analysis scenarios are based on the E&R scenario.

Scenario's name	Variable	Unit	Variation
FW-high	Floating Wind turbines LCOE	€/MWh	+25%
FW-low	Floating Wind turbines LCOE	€/MWh	-25%
TL-25, TL-50	Electricity transmission line	€/MWh	+25%, +50%
CO ₂ -low	CO ₂ Tax	€/tCO	Linear increase from 8 to 60 €/tCO in 2050.
CO ₂ -mod	CO ₂ Tax	€/tCO	Linear increase from 8 to 90 €/tCO in 2050.
H ₂ -low	Reuse of existing gas pipeline to transport hydrogen	€/MW/Km	Existing gas pipelines can be used for hydrogen at 10% of the costs of a new Hydrogen pipeline.

Results & Discussion

ABERDEEN

Decommissioning (BAU) scenario

- All platforms increase in costs towards 2050 until decommissioning.
- CO₂ and Fuel related expenses represent the highest share of costs among all clusters.
- CO₂ has the highest impact on the costs.
- The clusters' OPEX ranges from 0.74% to 1.44% of the cumulative energy related yearly costs.

The costs shown are energy related. Decommissioning costs and the platform OPEX are not considered.

Electrification

 The platform Electrification results in large savings in Costs (129 M€₂₀₁₂) and CO₂ emissions (1 MtCO2) in 2025

Repurposing

- All platforms are repurposed in alternative to a Full Decommissioning.
- The hydrogen plant accounts for 60% of the costs, on average 428
 [M€₂₀₁₂/year].
- The costs related to repurposing and operate the platforms account for 14%, in average 90 [M€₂₀₁₂/year]

Floating Wind installed capacity

- In E&R (reference) scenario FW is installed from 2045.
- Halfdan and Tyra have the largest share of FW capacity in 2045.
- FW reaches the aggregated capacity limit in 2050 (5.8 GW).
- FW is installed at the earliest in 2035.

Hydrogen plant per scenario

- In E&R (reference) scenario, Hydrogen is produced from 2045.
- Halfdan, Tyra and Harald are the first platform to produce hydrogen.
- On average about 3 GW of electrolyser capacity is installed across all fields.
- In a low FW scenario, production starts in 2035 with 0.4 GW plus.

Layout in 2050

- Pipelines are used only from 2045
- All platforms are interconnected to mainland in 2025
- Each cluster has invested in Floating Wind
- The Energy Island works as a bridge between the shore and the platforms

Discussion

- Platform operational costs (e.g. fuel consumption, CO2 taxes)
- Platform electrification (e.g. requirements, limitations)
- Platform repurposing (e.g. costs, technical issues)
- Costs allocation of investments (e.g. subsidies, ...)

References

- [1] Danish Energy Agency website Web link
- [2] Ospar survey Web link
- [3] Danish Energy Agency website Web link
- [4] COWI 2020, Tillæg til finscreening af havarealer til etablering af nye havmølleparker med forbindelse til energiø/hub September Web link
- [5] COWI 2020, Finscreening af havarealer til etablering af nye havmølleparker med direkte forbindelse til land Web link
- [6] IMSA Amsterdam, 2011, Decommissioning of North Sea oil and gas facilities. Web link
- [7] Energy Delta Institute, 2017, On the economics of offshore energy conversion: smart combinations Web link
- [8] Energy Islands Developing Renewable Energy Hubs (Webinar) IEA, DEA, DTU

Transforming the world with greater knowledge and learning