

Transport Policies in Wrong Direction and Climate Change Impact: Korean Cases Study

Jaehak Oh, Seung Kook Wu, JunhaengJo

2014.10.9

Soaring Domestic Gas Price

8th largest oil importer in the world

High dependency on imported oil !

I. Background

National and International GHG Reduction Effort

- Strong national vision to reduce transport GHG emission
- reduction target 34% of BAU in 2020
- New international GHG reduction agreement coming
- (Durban Platform)
- Transport accounting for 13% of national GHG emission

II. Car Property Tax

Car Property Tax Scheme

Before 2011

Engine size	Tax rate, won /cc
< 800cc	80
< 1,000cc	100
< 1,600cc	140
< 2,000cc	200
>= 2,000cc	220

Since 2011

Engine size	Tax rate, won /cc
< 1,000cc	80
< 1,600cc	140
>= 1,600cc	200

• International trade agreement simplifying taxing scheme

• Mid-size car owner shifting to big-size car

II. Car Property Tax

Car Value and Fuel Economy in Market

Car type	Price, mil won	Fuel economy, km/l	
BMW 5 series 2,000cc gasoline	70	12	
Hyundae Sonata 2,000cc gasoline	25	12	
Toyota Prius 1,800cc gasoline hybrid	35	21	

Source: http://auto.daum.net

• Originally property tax assuming value proportional to engine size

• Now, the tax neither property tax nor environmental protection or GHG emission penalty

II. Car Property Tax

UK like Car Tax Scenario and Effect (Hwang and Kim, 2010)

CO2 (g/km)	#car (1,000)	Tax rate, won /year/veh	CO2 reduction(ton/yr)	Env' benefit(mil won/yr)
< 130	536	0	13,161	412
< 150	1,173	69,912	39,069	1,224
< 175	2,996	134,446	284,285	8,906
< 200	3,782	201,669	745,772	23,364
<225	2,684	268,892	653,374	20,469
<250	1,048	403,338	333,215	54,375
=>250	262	537,784	189,611	3,806
sum	12,483		2,258,487	112,556

- Tax revenue decrease by 350 billion won
- GHG decrease by 2.3 million ton (2.8% of road sector total)
- Benefit from reduced environment external cost
 156 billion won (including carbon reduction benefit*)
- Short term tax loss adjustable in implementation stage

* 2010 carbon price applied

III. Toll Discount in Peak Time

National Freeway Toll Discount Scheme

Time of Day	Discount rate	Trip length	Vehicle type
To work, 05:00 – 07:00	509/	< 20km	Car Van 2-axle truck
To home, 20:00–22:00	50%		
To work, 07:00 – 09:00	20%		
To home, 18:00–20:00			

- Price not based on demand
- Revenue loss 240 billion won, CO2 increase 84,000

ton per year

Note: Non-peak toll 1,300 won – 1,900 won

III. Toll Discount in Peak Time

History of Toll Discount Implementation

- Left wing party (1998-2007) lost office by allegedly poor national economy
- Right wing party new in office introduced the discount to boost economy and help low income class commuter
- But peak time freeway is operated in close-tocapacity condition – low elasticity to price
- Commuters' average saving per month is only around 20,000 won
- Low income class commutes by public transport
- Discount only loses revenue for further investment

III. Toll Discount in Peak Time

Survey by Han (2009)

- Freeway toll 10% increase in peak and decrease in other TOD
 - 33% of weekday trip shifting to other mode/time/route
 - 45% of weekend trip shifting to other mode/time/route
- 44.8% Seoul residents yes for toll level change based on demand (or peak high, non-peak low)
- 69.7 % Seoul Cunchun freeway (one of most crowded) users yes for the change

Toll Scheme Suggestion by Han (2009)

IV. Fuel Subsidy

Fuel Subsidy Implementation History

- As of 2000. 07 price of gasoline : diesel : LPG=100 :
 47 : 26 by low tax rate on diesel and LPG under
 philosophy that diesel and LPG for business
- # of diesel and LPG private car increase causing tax revenue loss
- 1st and 2nd energy tax reform (2001-2007) set price of gasoline : diesel : LPG=100 : 85 : 50
- To make up revenue loss of truck, bus, taxi
 operators, subsidy to them so that tax level set to
 2001 (born as temporary subsidy but lasting)
- Fund from local tax on fuel sale at gas station

IV. Fuel Subsidy

Fuel Subsidy Effect and Criticism (Lee and Kang 2007, Gweon et al. 2012)

Beneficial for low income truck and taxi operators

(gini coefficient decrease after implementation)

- Fraud application for subsidy
- Competitiveness of rail shipping down
- Consigner to order shipping taking advantage of subsidy due to low shipping cost
- No good for improving efficiency of logistics system
- Long term suggestion
 - Increase fare and shipping fee so that operators not depend on government subsidy
 - → Logistics system efficiency improves to make cost down

V. Wrap-Up

Summary and Discussion

- Car property tax based on engine size, peak time toll discount, and fuel subsidy not good to improve energy efficiency of national transport system
- Policies in wrong direction born for many reasons
- Price policies once implemented, hard to correct or redirect due to political resistance
- Make political leadership aware of long term social loss by short term political benefit

V. Wrap-Up

Transport Energy Efficiency International Comparison

Data source : http://data.worldbank.org/indicator, www.opinet.co.kr

References

• S. Hwang and G. Kim (2010) Car Property Tax Reform to Reduce GHG emission, Korea Transport Institute. 온실가스 저감을 위한 자 동차 세제 개편방안

• S. Han (2009) Freeway System Efficiency Upgrade Strategy: Toll Rate Differentiation Based on Demand, Korea Transport Institute. 국 내 고속도로 이용 효율성 증대방안 연구: 고속도로 차등요금제 를 중심으로

- J. Lee and S. Kang (2007) Transport Fuel Subsidy, Effect and Improvement Strategy, Korea Transport Institute. 운송업부문 유가보 조금 제도의 효과분석 및 정책방향
- H. Gweon et al. (2012) Truck Fuel Subsidy Improvement Strategy, Korea Transport Institute, Ministry of Land Transport and Maritime.
 화물자동차 유가보조금 제도 개선방안 연구

