DTC Low Carbon Technologies Faculty of Engineering

Aircraft Cost Index and Carbon Emissions Reductions

Holly Edwards PhD Researcher in Low Carbon Aviation pmhae@leeds.ac.uk Aviation responsible for around **2-3%** of global greenhouse gas emissions

This proportion set to rise as carbon reduction solutions cannot keep up with demand growth

Likely scenario annual average growth rate:

- average growth rate 2010 to 2030 – 4.9% per annum
- 2030 to 2050 4% per annum

56,000 new aircraft required by 2040 (65% for growth)

CI = Time Cost (\$/min) / Fuel Cost (\$/kg)

- CI value determines the speed of the aircraft
- The higher the CI the higher the speed. This leads to higher fuel use and carbon emissions.
- Time costs are the most complicated to calculate and include
 - Flight and cabin crew costs
 - Maintenance costs
 - Depreciation costs
 - Delay costs

Cost Index

Emissions Savings: B767-300ER - 3.4% B777-300ER - 3.4% B787-8 – 4.5% A300-600R - 1.1% A340-600 - 12.3% A380-800 - 6.9%

Future Impacts

Impacts can be divided into three main areas:

- Technology
- Policy
- Environment

Technology

Aircraft and Airframe

- Thermodynamic propulsion efficiency
- Propulsion efficiency
- Drag
- Structural weight
- Radical designs

Operational Technology

- ADS-B
- Datalink
- Other ground systems

Maintenance – design of aircraft

Expected Improvements in fuel efficiency: aircraft technology

Scenario	Single Aisle		Twin Aisle	
	2020	2030	2020	2030
TS1: Continuation	23%	29%	19%	26%
TS2: Increased Pressure	29%	34%	25%	35%
TS3: Further Increased Pressure		41%		41%
TS3 with open rotor		48%		

Relative to year 2000 technology baseline

Expected Improvements in fuel efficiency: Operations

	2020	2030	2040
Goal	3.25%	6.75%	9.00%
Lower Confidence Interval	2.25%	4.50%	5.75%

Relative to 2010 levels

Technology

Biofuels

- Started to gain attention in late 2000s with high profile test flights
- Need to be at least second generation biofuels
- Still environmental and social issues attached to production of biofuels

Possible drop in fuel proportions:

- 2020 15%
- 2030 30%
- 2050 50%

Policy

- Operations
 - Airspace charging and restricted airspace
- Emissions Trading
 - Global agreement carbon pricing
- Regulation on crew work times
- Airport Construction

Zone	Unit Rate (EUR)	
Portugal	10.60	
Belg Luxembourg	72.19	
Germany	77.47	
Finland	52.21	
Netherlands	66.62	
Ireland	30.77	
Denmark	71.53	
Norway	52.66	
Poland	35.36	
Malta	27.76	
United Kingdom	89.26	
Switzerland	100.72	
Austria	73.54	

Environment

Climate Change Impacts on Aviation

Climate Impact	Aviation Impact
Temperature Increase	Changes in demand; changes in climb performance; redistribution on noise impact; heat damage to tarmac surfaces.
Changes in Precipitation	Operational impacts: loss of capacity and efficiency; increased delay; increased de-icing requirements; structural issues due to changes in ground frost depth and duration.
Increase in intensity and frequency of convective weather	Operational impacts: loss of capacity and efficiency, increased delay.
Changes in wind patterns	Increased crosswinds and loss of runway capacity; redistribution of noise impact due to procedural change
Sea Level Rise	Loss of network capacity; increased delays, network disruption; temporary or permanent airport closure

Environment

Jet Fuel

- In general there is an expectation that oil prices will rise
- Have to be careful that CI represents the price at origin airport
- To convert crude oil price to jet fuel price a 25% crack spread is used

UNIVERSITY OF LEEDS

Calculating CI and Costs

🌉 Pia

- Piano-X used to model flights for B767-300ER
- Mach numbers from MRC (CI=0) and the maximum
- Fuel burn and flight time used to calculate CI for each Mach number
- Costs allocated for each CI – time costs from University of Westminster, fuel and carbon costs from DECC.

X	
B767-300ERW (412)	Piano-X Copyright @ 2008 Lissys Ltd / D.Simos (www.piano.aero)
Pasia Design Weights	Londing plane: R767-200FDW (412) Done
buac beagn weights	DANCE DEDODT (design range (standard parload)
186880 220	
93032 95.3	{TOW 186880.kg./ OEW 93032.kg./ Fuel 71178.kg./ Payload 22671.kg.}
133810 0	Range mode: fixed mach, step-up cruise
145149	Climb schedule: 250./ 314.kcas/ mach 0.752 above 25276.feet
	Cruise at Mach = 0.800 {FL 320 340 360 380}
90774	ICA 32000.feet, 467.ktas, 291.kcas, CL=0.52, 46116.newtons/eng=MCR-21% FCA 38000.feet, 455.ktas, 254.kcas, CL=0.46, 31634.newtons/eng=MCR-30%
Ve Adjustments Load Adjustments	Distance Time Fuelburn (n.miles) (min.) (kg.)
	Climb 112. 17. 3310. {S.L to ICA}
Block Range Summary GO	Cruise 5853. 761. 59699. {ICA to ICA} Descent 104. 18. 311. {ICA to S.L}
۲	Trip total 6070. 797. 63321. Block total ======= 811. 64057.
with Payload (kg)	Emissions: taxi,t/o climb cruise descent app,taxi total
1000 22671	(kg.NOx) 9.3 77.1 689.7 1.0 1.4 778.5
	(kg.CO) 5.0 2.3 151.9 16.3 8.2 183.7
	Manceuvre allowances: taxi-out 103. kg {extra to t/o mass} 5.0 min. takeoff 373. kg, xtra to t/o mass} 1.5 min. approach 157. kg. 3.0 min.
	tax1-in 103. kg. {taken from reserves} 5.0 min. Reserves {at landing mass 123029.kg.}:
	Diversion distance 200. n.miles
	Diversion mach 0.597 Diversion altitude 22523 feet
	Diversion fuel 2503. kg.
	Holding time 30. minutes
	Holding mach 0.279 Holding altitude 1500 feet
	Holding fuel 1632. kg.
	Contingency fuel 3193. kg. {5.% of mission fuel}
	Total Reserve fuel 7327. kg.
	Save Output

UNIVERSITY OF LEEDS

Overall Effect on Cost Index

Impact on CO₂ Emissions

UNIVERSITY OF LEEDS

Global Impact

AC \$/RA: Airspace charging/restricted airspace

Severe Extreme Weather Sea Level Rise

Polar Jet Stream Subtropical Jet Stream

 Busy/Congested/ Airports

Conclusions

- Cost Index can provide a tool for assessing future impacts on aviation on a flight by flight basis
- Cost Index is also a tool for reducing emissions in itself
- Three main areas which will have an effect policy and environment are still very uncertain.
- Questions over the impact of implementing a carbon price.
- Need policy that:
 - A. Addresses both direct and indirect impacts on Cost Index
 - B. Provides real incentives and solutions to reducing emissions
- Whole aviation system needs to be considered.