

Network tariff design with electric vehicles and distributed energy resources

Quentin Hoarau*, Yannick Perez, Tim Schittekatte

WCTRS conference - CentraleSupelec - 18/06/22

* Université Paris-Sud & Climate Economics Chair

Overview

Introduction and motivations Methods Model Setup and data Results Effects of DERs and EVs on tariff design Spillovers between DERs and EVs Effects of network costs structure

Conclusion

Introduction and motivations

Electric vehicles as a key-element of energy transition

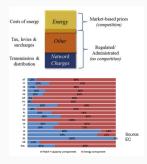
- Small but dynamic local trends of EV diffusion
- Disruptive technology for power grids :
 - For EV owners : huge increase of electricity bills
 - For power grids : between stabilization and destabilization ?
 - For renewable energy : source of flexibility?

Electric vehicles as a key-element of energy transition

- Small but dynamic local trends of EV diffusion
- Disruptive technology for power grids :
 - For EV owners : huge increase of electricity bills
 - For power grids : between stabilization and destabilization ?
 - For renewable energy : source of flexibility?
- But in parallel, an other disruption happening in power grids, with distributed energy resources (DERs) with
 - solar PV
 - home lithium-ion batteries

Electric vehicles as a key-element of energy transition

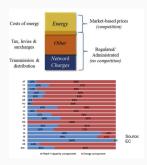
- Small but dynamic local trends of EV diffusion
- Disruptive technology for power grids :
 - For EV owners : huge increase of electricity bills
 - For power grids : between stabilization and destabilization ?
 - For renewable energy : source of flexibility?
- But in parallel, an other disruption happening in power grids, with distributed energy resources (DERs) with
 - solar PV
 - home lithium-ion batteries
- Synergies between DERs and EVs?
- How do the economic rules shape the integration of EVs in power grids and their interaction with DERs?


Related literature

- EV integration in power grid : massive uncontrolled charging should increase grid costs
- EV/DERs interaction : synergies (lower costs and GHG) conditioned by techno-economic factors
- Tariff design : next slide

Tariff design with DERs

What is network tariff design?



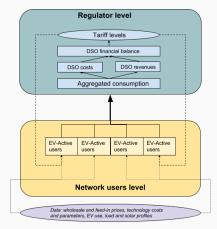
Principles of tariff designs :

- cost reflexivity
- grid cost recovery
- fairness between users

Tariff design with DERs

What is network tariff design?

Tariff design with DERs : towards a vicious circle?


Principles of tariff designs :

- cost reflexivity
- grid cost recovery
- fairness between users

- How can EV be included in network tariff design?
- What are the resulting effects of DERs and EV adoption on network tariff design ?
- What are that resulting effects of tariff design on both DERs and EVs ?

Methods

Model framework

- Stackelberg game between the regulator and network users
- Regulator chooses a tariff structure and ensure network cost recovery. Grid costs are all sunk
- active users minimize their electricity bill by investing in DERs and/or smart charging their EV
- EV adoption is exogenous
- "commuting" EVs (away during the day)
- Model solved iteratively

Scenarios and evaluation

Tariff structure :

- Volumetric with/o net-metering (EUR/kWh)
- Capacity (EUR/kW)
- Fixed (EUR) (used as a reference case)

Scenarios and evaluation

Tariff structure :

- Volumetric with/o net-metering (EUR/kWh)
- Capacity (EUR/kW)
- Fixed (EUR) (used as a reference case)

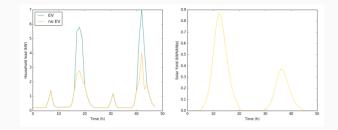
Diffusion scenarios :

- Low EV Low Active (10%-10%)
- Low EV High Active (10%-50%)
- High EV Low Active (50%-10%)
- High EV High Active (50%-50%)

Scenarios and evaluation

Tariff structure :

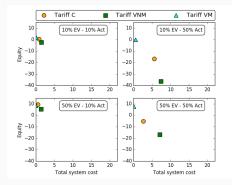
- Volumetric with/o net-metering (EUR/kWh)
- Capacity (EUR/kW)
- Fixed (EUR) (used as a reference case)


Diffusion scenarios :

- Low EV Low Active (10%-10%)
- Low EV High Active (10%-50%)
- High EV Low Active (50%-10%)
- High EV High Active (50%-50%)

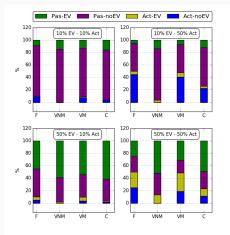
Evaluation proxies :

- Efficiency : variation of total system cost
- Equity : variation of passive users' welfare
- EV incremental cost : costs difference between EV and non-EV owner
- DER adoption : average DER capacity from active users


Data

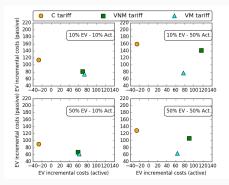
Parameter	value	Parameter	value
PV panel/battery lifetimes	20/10 years	(dis)charging efficiency	90%
PV investment cost	1300EUR/kWp	Battery investment cost	200EUR/kWh
Discount rate	5%	Maximum solar PV	5kW
Daily travel distance	40km	plug power	3kW
EV battery capacity	40kWh	Charging hours	5pm-7am
"Normal" annual power consumption	6500kWh	Annual solar yield	1160kWh/kWp
"Normal" electricity price	0.18EUR/kWh	Energy/Network ratios	45-35%

Results

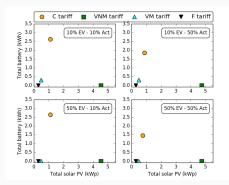

Opposite effects of EVs and active users

- Fixed tariff do not incentivize for DERs and do not change EV costs
- Volumetric without metering reduce over-incentives
- Vol net-met tariff strongly incentivize for solar PV, but EV greatly reduce the effect on tariff
- Capacity tariff incentivize for batteries and create similar issues that vol net-met

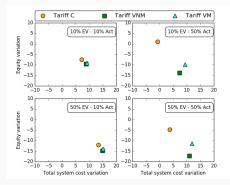
Distribution of network costs between users


Who is bearing network costs?

With vol. net-met and cap tariffs :


- active noEV user do not contribute to network costs
- EV owners particularly contribute to network costs

How are EV incremental costs impacted with tariff changes ?


- Under capacity tariff, huge discrepancy between active and passive EV incremental costs
- Vol. net-met tariff, EV incremental cost increases are higher than network charges increase

If EV tend to lower tariffs, how would it affect DERs profitability?

- No spillover from EVs with vol. net-met
- With capacity and vol without net-met, battery adoption severely impacted, solar PV not impacted

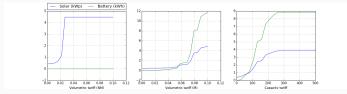
We assume now a variable component in grid costs

- EV charging increases grid costs and therefore network charges for all users
- Active EV owners contribute to decrease total system cost
- Capacity tariff cost-reflective and improve equity and efficiency
- Other tariff do not improve equity

Conclusion

With volumetric and capacity tariffs :

- EV and DERs have counterbalancing effects on tariff design
- Through the grid cost recovery, EV and DERs induce externalities on each other
- EV owners bear a very significant shares of network costs


Future works :

- Generalize to electrification and self-supply case study
- Extend the analysis to higher-voltage networks (including workplaces, charging stations)
- Analytical model to explain better incremental effects

Thank you for you attention ! Any questions ?

Appendix

Best responses of active users

