PUSH EV DEMAND OR SUPPLY? Evaluating zero-emissions vehicle policy in Canada

Jonn Axsen Associate Professor Sustainable Transportation Action Research Team (START) Simon Fraser University Vancouver, Canada

June 22, 2018 World Conference on Transport Research Society (WCTRS), SIG f2: Transport, Climate Change and Clean Air Paris, France

SFU

How to get to 30% PEV sales by 2030?²

Policies that can induce PEV sales Demand-focused policy

- Purchase incentives
- Non-monetary incentives (HOV lane, etc.)
- Charger deployment
- **Supply-focused policy**
 - ZEV mandate (sale requirements)
 - Fuel efficiency standards
 - Low-carbon fuel standards

Some policy criteria: effective, cost, political acceptability, transformative signal

Some research concepts

A reflexive, multi-method approach

4

What is demand?

Sales: current market share.

Latent demand: demand for a product or service that a consumer cannot satisfy because it is not available, or they do not know that it is available.

Induced demand: an increase in sales due to increases in supply or awareness (or alleviation of other barriers).

Q1: what is the latent demand for PEVs?

Q2: how can policy push sales towards latent demand?

The data

Canadian "Mainstream" Survey (n = 2,123), representative of new vehicle buying households

Source: Kormos, et al. (Under Review), Transportation Research Part D

Method 1: "Design Space" Exercise 9

Click Here to open the example response that we provide earlier in a new window.

Vehicle type	Driving range	Gasoline fuel use	Refuel/ Home recharge time	Purchase price	I CHOOSE
	\rightarrow	Gas		\$	
A conventional RAM 1500 4X4 FFV	750 km gasoline	15.2 L/100 km	5 mins	\$50000	Conventional Please select
A hybrid RAM 1500 4X4 FFV	750 km gasoline	10.2 L/100 km	5 mins	\$51600	Hybrid 1st Choice •
A plug-in hybrid RAM 1500 4X4 FFV	Electric for the first: Please select your answer	10.2 L/100 km	Time to fully charge empty battery at home Please select your answer	\$0	Plug-in hybrid Please select
A electric only RAM 1500 4X4 FFV	Electric only for: Please select your answer	None	Time to fully charge empty battery at home Please select your answer	\$0	Electric Please select V
A hydrogen fuel cell RAM 1500 4X4 FFV	500 km hydrogen	None	5 mins	\$61000	Hydrogen 2nd Choice

Method 2: Stated choice experiment ¹⁰

Vehicle type	Range	Recharge/ refuel time	Destination recharging or refuelling access		Fuel cost	Purchase price & incentive	I CHOOSE
			Level 2	Fast or H ₂ refuelling	\$	\$	
Conventional Honda CIVIC	650 km gasoline	5 min.	_	_	\$32 /week	\$25,000 - \$0 \$25,000	Conventional
Hybrid Honda CIVIC	1070 km gasoline	5 min.	_	-	\$20 /week	\$26,380 - \$0 \$26,380	Hybrid
Plug-in hybrid Honda CIVIC	575 km First 72 km electric	Home: 6 hrs. Work: –	25% of destinations	_	\$18 /week	\$30,180 - \$5,000 \$25,180	Plug-in Hybrid
Electric Only Honda CIVIC	200 km electric	Home: 6 hrs. Work: –	25% of destinations	None	\$10 /week	\$38,820 - \$5,000 \$33,820	Electric
Hydrogen fuel cell Honda CIVIC	350 km hydrogen	5 min.	_	20% of gas stations	\$10 /week	\$41,230 - \$0 \$41,230	Hydrogen

Design space results: 14-21% design some¹ sort of ZEV, mostly PHEV

Source: Long et al. (Under Review), Transportation Research Part D

Stated choice model: latent demand around² 30%, up to 50% with policy

Source: Kormos et al. (Under Review), Transportation Research Part D

The model

The respondent-based preference and constraint model (REPAC)

Source: Wolinetz & Axsen (2017), Technological Forecasting & Social Change

The respondent-based preference and constraint model (REPAC)

Source: Wolinetz & Axsen (2017), Technological Forecasting & Social Change

REPAC lines up well with actual PEV sales in 2015

Source: Wolinetz & Axsen (2017), Technological Forecasting & Social Change

Comparing policy packages in Canada ¹⁸

Target: 30% PEV market share by 2030

1) Current policies

- Some purchase incentives, HOV lane access
- Planned charger deployment
- Clean Fuel Standard
- National carbon pricing

2) + Incentive-based approach (demand-focused)

- What is needed for 2030 target?
- Incentives for how long? 2021, 2025, or 2030?
- 3) + ZEV-mandate approach (supply-focused)
 - Require 30% or 40% by 2030
 - Automakers comply via:
 - Increased PEV model variety and availability, and
 - internal cross-price subsidies,

Modeled ZEV purchase prices

costs (CDN) High: ~\$125/kWh Low: ~ \$85/kWh

2030 battery pack

With increasing **OEM markups**

Source: Axsen & Wolinetz (Under review)

Current policies don't get past 10% new market share...

\$6000 / PEV subsidy until 2021...

\$6000 / PEV subsidy until 2025...

ZEV mandate: cross-price subsidies needed to comply

Policymaking is complex and needs multi-criteria evaluation

Canada's ZEV Policy Handbook

Noel Melton Dr. Jonn Axsen Suzanne Goldberg Barbar Moawad Michael Wolinetz

Sustainable Transportation Action Research Team (START) Simon Fraser University December 2017

Source: Melton et al. (2017), Canada`s ZEV Policy Handbook

Policymaking is complex: Evaluating three policy packages that could achieve 2030 target

	Effectiveness	Cost Effectiveness	Public Support	Policy Simplicity	Transformational Signal
Demand-focused policy package	5	1	3	4	2
Supply-focused package (ZEV mandate)	5	5	4	2	5
Supply-focused package (vehicle emissions standard)	5	5	4	3	4

Source: Melton et al. (2017), Canada`s ZEV Policy Handbook

Key implications

- 1. Achievable: 2030 goals of 30% PEV sales
- 2. Significant "latent" demand (20% to 40%)
- 3. But stronger policy needed to induce sales
 - Incentives needed for the long-term (costly)
 - ZEV mandate, puts more onus on automakers
 - Other policy packages possible

Extra

Consumer perceptions are complex: functional, symbolic and societal dimensions

Sources: Axsen and Kurani (2012), Environment and Planning A Axsen, Orlebar & Skippon (2013), Ecological Economics

30

Perspectives on the "mainstream" consumer

The "Rational Actor".... The "Reflexive Participant"...

The "Reflexive Participant Approach": Three elements

Beware of the "Hype & Disappointment" cycles for alternative fuels (New York Times 1980-2013)

Source: Melton, Axsen & Sperling (2016), *Nature Energy*

Long-term modeling suggests that PEVs can play an important role in GHG mitigation

Source: Sykes and Axsen (2017), *Energy Policy*

6) From research to policy evaluation ³⁴

"Qualitative" interviews n = dozens

"Quantitative" surveys n = 100s or 1000s

Technology adoption models (0-15 year time horizon)

Energy-economy system models (20-40yr + time horizon)

Canada's Electric Vehicle Policy Report Card

Dr. Jonn Axsen Suzanne Goldberg Noel Melton

Sustainable Transportation Action Research Team Simon Fraser University November 2016

Energy Policy 107 (2017) 381-393

Contents lists available at ScienceDirect

Energy Policy

journal homepage: www.elsevier.com/locate/enpol

Evaluating plug-in electric vehicle policies in the context of long-term greenhouse gas reduction goals: Comparing 10 Canadian provinces using the "PEV policy report card"

Noel Melton^{a,b,*}, Jonn Axsen^b, Suzanne Goldberg^b

METCALF FOUNDATION

Social Sciences and Humanities Research Council of Canada Conseil de recherches en sciences humaines du Canada

Policy Goal:

To achieve long-term GHG mitigation targets, PEVs reach 40% of new vehicle market share by 2040 (IEA scenario) – that is an "A"

Identify electric vehicle supportive policies

Evaluate the effectiveness of each policy Assign letter grades to each province (based on the effectiveness of their policies)

Adapted from: Axsen et al. (2017), Energy Policy

Many PEV-supportive polices (62 active), mostly demand-focused

Policy	Policy Benchmark (i.e. maximum stringency	Estimated 2040 electric vehicle market share impact		Grade	Estimated market share in 2040	Policy performance		
	and duration)			Α	35%+	Excellent performance: Initiatives are likely to meet o exceed target		
Demand-side policies								
Financial incentives	\$12,000 per vehicle for 15 years.	10%						
HOV lane access	100% of congested highways have HOV lane access for PEVs.	1%		В	20-35%	Moderate performance: Initiatives are likely to boost the adoption of electric vehicles but not achieve target		
Public charging	One public charger for every two gas	3%				,		
deployment	stations (sufficient charger density to alleviate range anxiety).				10-20%	Marginal performance: Initiatives are likely to achieve		
Building regulations	100% of population has level 2 home charging access.	8%		C	10 20-0	relatively limited adoption of electric vehicles		
Carbon Price	Carbon price on track to meet \$150/tonne CO2e by 2030.	15%			E 10%	Poor performance: Initiatives are likely to achieve		
Supply-side policy				D	5-10%	relatively limited adoption of electric vehicles		
ZEV mandate	California's ZEV mandate (requiring 9 to 21% electric vehicle sales by	15%						
	2025).					Unsatisfactory performance:		
Vehicle emissions standards	Vehicle emissions standards with electric vehicle credits reaching 98g CO2e/100 km by 2025.	2%		F	0-5%	Initiatives, if any, are likely to induce only marginal adoption of electric vehicles		
Low Carbon Fuel standards	Low carbon fuel standard requiring a 10% reduction in carbon intensity by 2020, with electric vehicle credits.	0.3%						

Grades across Canada.... 7 provinces in the "D" or "F" range

2040 Goa

Grades across Canada.... **Ontario and BC in the "C" range**

2040 Goa

Electric vehicle market share impact in 2040

Grades across Canada.... Quebec is our inspiration at "B"

40% А 35% Proposed policies Public charging HOV access 30% B Financial incentives в Building regulation 25% Carbon pricing Low carbon fue standard Vehicle emissions standard 20% ZEV mandate 15% C 10% D 5% F Saskatchewan 0% BritishColumbia ontario Prince Laward Island Maritoba New Brunswick Alberta Quebec Nova Scotia Newfoundland and Grade

Electric vehicle market share impact in 2040

Axsen et al. Energy Policy (201 Adapted rom

2040 Goa

What are the most effectives climate policies in Canada?

Electric vehicle market share impact in 2040

World-leading policy can raise all grades

Province	Current policies*	Current + proposed*					
Canada	c-	с					
British Columbia	c-	c-					
Alberta	D	D					
Saskatchewan	F	D					
Manitoba	F	D					
Ontario	c-	с					
Quebec	в-	В					
New Brunswick	F	D					
Nova Scotia	F	D					
Prince Edward Island	F	D					
Newfoundland and Labrador	F	D					

Latent-class choice model (LCM)

TABLE 5 Results for 5-Segment Latent Class Model (Canadian-wide sample, n=2124)

Segment name	CV	oriented			EV-oriented			EV-oriented		ZF	V-curious		PEV-enthusiast	
Percentage of respondents in segment		23%			21%			22%			21%		13%	
Latent Class Model		2070											1070	
Measure of vehicle interest (s)														
HEV		-2.87	***		1.48	*		1.30	***		0.653	*	1.07	*
PHEV		-4.92	***		-1.47	***		0.567	**		-0.603	**	2.63	*
BEV		-8.93	***		-5.32	***		-2.90	***		0.0782		1.89	*
HFCV		-4.94	***		-4.19	***		-2.39	***		0.0842		-1.11	
Measure of preferences (coefficients)								2.27			0.0012			
PHEV range (km)		0.001450			-0.000832			0.00263			0.00350	*	0.000578	
BEV range (km)		0.00598			0.00513			0.00265			-0.00277	***	0.00101	
HFCV range (km)		0.000252			0.00227			0.00220	**		0.000335		0.00150	
Vehicle price (CAD\$)		-0.000154	***		-0.000292	***		-0.000290	***		-0.000032	***	-0.000012	***
Fuel cost (CAD\$/week)		-0.000225			-0.0133	***		-0.0160	***		0.000069		-0.000105	
Incentive value (CAD\$)		0.000129	***		0.000133	*		0.000296	***		0.000079	*	0.000096	***
Home charging (Level 1 or 2)		-0.127			-0.249			0.650	***		-0.0172		-0.0422	
Workplace charging (Level 1 or 2)		-0.281			0.165			0.0519			0.117		0.188	
Public charging (% of destinations)		0.0120			0.00565			0.00260			0.00425		0.00194	
DC fast charging (access on major highways)		0.808			0.177			0.314	***		0.162		-0.240	
Hydrogen station availability (% of gas stations)		0.0171			0.0205			0.0156	**		0.00121		0.011	
Implied willingness-to-pay ^{a,b}		0.01/1			0.0200			0.0100			0.00121		0.011	
Valuation of vehicle type (\$ CAD)														
HEV (all else held constant)	\$	(18,675)		\$	5,052		\$	4,476		\$	20,598		\$ 87,981	
PHEV-60km (all else held constant)	š	(31,977)		š	(5,028)		š	1,951		š			\$ 215,907	
+ home charging	Ť	(52,577)		Ť	(0,020)		š	4,188			(12,550)		• 210,007	
+ DC fast charging							š	3.034						
BEV-220km (all else held constant)	\$	(58,104)		\$	(18,188)		š	(9,991)					\$ 154,796	
+ home charging	Ť	(50,101)		Ť	(10,100)		š	(7,755)					¢ 151,750	
+ DC fast charging							ŝ	(8,909)						
HFCV-500km (all else held constant)	\$	(32,107)		\$	(14,335)		š	(4,443)						
10% gas stations	Ť	(52,207)		Ť	(1,555)		š	(3,904)						
50% gas stations							š	(1,750)						
100% gas stations							š	943						
Valuation of vehicle type (\$ CAD)							•	2.12						
PHEV range (per km)										\$	110			
BEV range (per km)										š	(87)			
HFCV range (per km)							s	8			(0.)			
Fuel cost savings(per year)				\$	2,373		š	2,876						
Incentive value (per \$1000 incentive)	\$	838		š	454		š	1,019		\$	2,494		\$ 7,897	
Home charging (of Level 1 or 2)	Ť	0.00			151		š	2,237			2,121		• ,,,,,,,,,	
Workplace charging (of Level 1 or 2)								2,237						
Public charging (per % of destinations)														
DC fast charging (for access on major highways)							\$	1,082						
Hydrogen stations (per % of gas stations)							ŝ	54						
any an open stations (per /o or gas stations)							4							

Note the difficulty of modeling supplyfocused policy (e.g. ZEV mandate)

- A ZEV mandate can induce a variety of compliance strategies:
- **1. Increase ZEV availability in that region**
- 2. More ZEV-ready dealerships
- 3. New ZEV makers emerge (e.g. Tesla)
- 4. Internal cross-subsides (cheaper ZEVs)
- 5. Long-term R&D (more variety, lower costs)
- 6. Strong signal for stakeholder coordination
- 7. More local ZEV marketing

"Sort of" modeled in REPAC as increasing awareness, but not preference change

Modeled in REPAC 46

California's (and Quebec's) ZEV Mandate

- Sales requirement: "the most direct policy change any state can take to ensure increased PEV deployment"
- California now: ZEVs ~15% of new market share by 2025
- Credits differ by vehicle (PHEV, EV, Fuel Cell)
- Credits can be traded among automakers (noncompliance = \$5k per ZEV credit)

Note: Tesla earned \$139 million in Q3 2016 by selling ZEV credits!

What might happen with a ZEV mandate? 48

- A variety of potential actions....
- For a small region (e.g. Quebec):
 - 1. More EV models available (bigger inventory, less wait time)
 - 2. More dealerships become EV-ready (training, etc.)
 - 3. EVs become more affordable (pricing changes)
 - 4. More local marketing

For the world:

- 5. Automakers channel more funds into R&D for EVs
- 6. New EV automakers can emerge (e.g. Tesla)
- 7. More, cheaper EV models in the long-term
- 8. Strong signal for various stakeholders to transition (direction)

Multiple ways to push electric vehicles, but subsidies cost* 20-30 times more than ZEV mandate

Source: Axsen and Wolinetz (Under review), *Transportation Research Part D*