THE POTENTIAL ENERGY USE & CO_2 EMISSION REDUCTIONS OF ELECTRIC TRUCKS POWERED BY OVERHEAD LINES

Patrick Plötz, Till Gnann and Martin Wietschel Fraunhofer Institute for Systems and Innovation Research ISI

July 2016: First eHighway in Sweden

© Scania

WCTRS International Conference: Transport, Climate Change and Clean Air, Paris, June 21, 2018

A drastic reduction of CO_2 emissions is required to reach Europe's climate targets.

- EU target: reduction of GHG emissions by 80% compared to 1990
- Transport sector has to contribute, but goals not achievable with combustion engines vehicles
- > Solutions for Transport required if we want to maintain our present way of life
- It is not about cost compared current technology but most cost-efficient future technology

Heavy duty trucks make up only 5% of truck stock but 50% of truck CO_2 -Emissions

- Heavy trucks have high annual mileage and high energy consumption
- For long-term CO₂-neutrality in the transport sector, we need solutions for the heavy truck transport (today Diesel only)
- Batteries not feasible for long-distance trucks
- Possible solutions:
 - Hydrogen FCEV
 - Power to gas, e.g. renewable LNG
 - Overhead line-trucks

The alternative electricity paths have advantages and disadvantages

	Direct use of electricity	Hydrogen	Electricity-based hydrocarbons
Advantages	 Most efficient path 	 medium efficiency 	 Infrastructure partly exists
	 In many cases cheap 	 Can be stored 	• Existing storage can be used
Disad- vantages	 Necessary expansion of grid 	 Converting infrastructure is complex and expensive Path dependency 	 CO₂ input necessary
	and possibly storage infrastructure		 Potentials for "carbon-neutral" CO₂ severely limited
	 For high share of fluctuating RE, flexibility measures incl. storage must be expanded 		 Expensive (avoidance costs more than 500 EUR/t)
	 Energy density too low for some applications 		 Most inefficient of the three options (highest losses)
Efficiency today (WTT)	~95 %	~60-70 %	~50-60 %
Efficiency today (WTW)	85 %	25-35 %	20-25 %

Different variants and energy connections for electric trucks are under discussion

Electric motor + 200 kWh battery \rightarrow long-term electrification?

Serial diesel hybrid with small traction battery as puffer (~10 kWh) \rightarrow Today preferred for full flexibility

Potential of overhead line construction

- Car and truck traffic concentrated on some highways
 - \rightarrow Highways with higher loads should electrified first

 $u_{BAB} = 1 - \Phi \left(\Phi^{-1} \left(1 - \frac{km_{el}}{12980} \right) - 1,19^2 \right)$

 \rightarrow 33% expansion electrify 50% of truck VKT

Simulation of truck electrification

Sources: http://www.bast.de/DE/Statistik/Verkehrsdaten-Downloads/2010/Manuelle-Zaehlung-2010.html and http://www.mauttabelle.de/maut.html as well as calculations of PTV AG

Expansion of electrification – connected highway sections of high intensity needed

Sales share for trolley trucks in 2030 for **1000 kilometers** of overhead lines ALLERADING

Results from market simulation model ALADIN: Individual simulation for several thousand duty vehicle driving profiles + TCO calculation + limited availability of new technologies + only German highway usage

Results:

12 – 26 ton GVW:

- e-trucks with 10% Market share in new registrations
- Main fuel remains Diesel

Heavy duty (> 26 tons max weight)

- Only small number of electric trucks
- Natural gas vehicles (NGV) have 60% market shares

Sales share for trolley trucks in 2030 for 4000 kilometers of overhead lines ALLERATION ALLERATION

Results from market simulation model ALADIN: Individual simulation for several thousand duty vehicle driving profiles + TCO calculation + limited availability of new technologies + only German highway usage

Results:

12 – 26 ton GVW:

- e-trucks with 15% Market share in new registrations
- Main fuel remains Diesel

Heavy duty (> 26 tons max weight)

- electric trucks with 25% of sales
- Natural gas vehicles (NGV) still important

> Noteworthy grid impact at highway intersections in rural area

Overhead line system could be cost effective for up to 3000 km in Germany

Overall economic perspective:

- Assumed infrastructure cost of 2.2 million € per km e-highway (one lane in both directions all inclusive)
- Annual cost for the infrastructure (annuity for 30 years of usage at 5% interest rate) vs. annual fuel cost savings (benefits) from the more efficient electric driving
- Net benefit positive up to 2500-3000 km or about 20% of grid
- BUT: calculations for purely German system of the infrastructure and full intake of users' profits
- Some overhead-line infrastructure for trucks could be cost-effective

The usage phase dominates the life cycle emissions with a noteworthy net benefit

GHG summary for 30% e-trucks in Germany

e-highway construction

Comparison to Diesel truck including

- Construction of e-highway & additional truck components
- and e-truck usage
- Assumed e-truck is diesel hybrid truck with
 - Fleet of 60'000 heavy duty vehicles (1/3 of stock)
 - 114'000 km annual VKT
 - 65% electric drive fraction and 35% diesel
- with 190 gCO2eq/kWh (governmental reference scenario for 2030)
- Results:
 - Infrastructure GHG emissions negligible
 - GHG savings of 37 t CO2/a per vehicle
 - GHG savings of 2.2 million tons of CO_{2eq}/a in 2030

Electrification of European highways?

- High share of heavy duty transport in Europe is cross-national
- About one third of the European highway grid are approx. 25,000 km
- Trans-European traffic corridors best start
- Alternative fuels infrastructure directive for joint European system
- Debate is still in an early phase and likelihood of European overhead line grid unclear

Lisbon

Energy consumption e-Trucks by country

Plötz et al. (2018): Impact of Electric Trucks on the European Electricity System and CO₂ Emissions.

Overhead line e-trucks are an interesting option for zero emission heavy duty transport

- First steps in GHG emission reductions: (1) avoid and (2) shift to electric rail
- Electric highways are a potential step towards zero emission heavy duty vehicles
 - Technology readiness level quite high (close to commercialization)
 - pro: high efficiency from direct use of electricity and efficient electric motor (implies lowest use of additional renewable generation) → most efficient heavy duty option
 - con: infrastructure invest and difficult electric driving away from e-highway
- Some infrastructure could be cost-effective but further solutions needed for driving off the highway
- Open issues:
 - 50% of heavy duty highway traffic in Germany is transit: Full European system would generate higher benefits → political commitment would be required
 - Full energy system analysis (generation, infrastructure etc.) and comparison to import of renewable fuels, e.g. from north Africa or middle east

Thank you!

