Optimal Policy and Network Effects for the Deployment of Zero Emission Vehicles

> Jean-Pierre Ponssard (CNRS & CREST) joint with G. Meunier (INRA, CREST)

> > 21 Juin 2018

イロト 不得下 イヨト イヨト 二日

1/28

• Externalities from traditional (gasoline) cars:

- ► GHG emissions (World 14%, France 28%, US 27%)
- Local pollution: particulate matter and noise
 France: 48000 premature death, 9 to 15 months lost
- Electric vehicles should be deployed
 - Two technologies: Battery and Fuel Cell (hydrogen)
- The current low rate of penetration is explained by:
 - Cost of a car
 - Lack of filling infrastructure
 - Limited range

Introduction

Introduction

INCENTIVE CATEGORY	EXAMPLES		
Direct consumer incentives	Vehicle purchase subsidy or tax incentivesVehicle registration fee exemptions		
Indirect consumer incentives	 Preferential access (access to bus lanes, free or preferential parking, access to low- emission zones, etc.) 		
Infrastructure support	Funding for charging infrastructureFunding for home chargers		
Complementary policies	 Public procurement preference for electric vehicles Consumer outreach and education Research & development support 		

Overview of incentives (Tietge, 2016)

・ロト ・四ト ・ヨト ・ヨト 三日

France: Innovative business models for clean mobility

HYPE Taxi Fleet Project - Paris

Objective

- Analysis of the early stage of deployment of a technology that requires an infrastructure (critical complementary good)
 - Clarification of the "chicken-and-egg" debate, and the role of indirect network effects
- Model (partial equilibrium) with
 - Imperfect competition (Cournot) on the car market
 - "Scale effect" (learning-by-doing, supply base development) on the car market
 - "network effect": filling stations are critical, competitively supplied, with limited capacity (no economies of scale issue)
- Analysis of the social optimum, the market equilibrium, the optimal (first and second best) policies
- $+\,$ Numerical illustration based on FCEV deployment in Germany

Results

- Multiple welfare extrema and market equilibria
 - both related to critical network
 - possible lock-in
- The "best" market equilibrium is still sub-optimal because of the three market failures
- Couple of subsidies on both cars and stations are required to implement the optimum
 - or integrated monopoly and car subsidy only
- Anlysis of second-best policies in which only cars or stations are subsidize
- Numerical illustration with FCEV in Germany

Network effects:

- The utility of a user is increasing with the number of users: positive externality Rohlfs (1974), Katz and Shapiro (1985) Farrel and Saloner (1986)
- Indirect network effect:

More hardware users \rightarrow more softwares \rightarrow increase WTP for hardware More EV users \rightarrow more filling stations \rightarrow increase WTP for EV

- Direct and indirect network effects are often conflated (Shy, 2011)
 - Explicit modeling: Clements (2004), Church et al. (2008), Chou and Shy (2004)
 - ▶ Debate: Is there a market failure? (Liebowitz and Margolis, 1995)

• Environmental economics:

- Empirical evaluations of policies (rebates, free parking etc), Bjerkan et al. (2016), Pavan et al. (2015)
- Numerical simulations with infrastructure: Meyer and Winebrake (2009), Harrison and Thiel (2017)
- Direct Network effects: Sartzetakis and Tsigaris (2005), Brecard (2013), Greaker and Midttome (2016)
- Greaker and Heggedal (2010) theoretical analysis of the possibility of lock-in with infrastructure
 - Filling stations: Scale economies (no capacity constraints) and price competition à la Salop (1979)
 - No Welfare and policy analysis

- The model
- Social optimum
- Market equilibrium
- Optimal policy
- Numerical Illustration (FCEV in Germany)

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The model

• Two goods: cars and fuel

- prices p_V and p_F
- quantity of fuel per car is fixed, X is the quantity of cars and of fuel
- fuel is distributed by K filling stations
- Consumers gross surplus:

$$S(X,K) = s(X) - r(K)X$$

r(K) is "range anxiety", cost to search and reach a station, r'(K) < 0
 Specification:

$$s(X)=(a-rac{b}{2}X)X, ext{ and } r(K)=etarac{1}{K}$$

• Consumers net surplus: $S(X, K) - p_V X - p_F X$

Production

- Cars:
 - Production cost $C_V(X)X$ with $C'_V(X) < 0$
 - "scale effects": learning-by-doing, eco-system development
 - *m* Cournot competitors:

$$\pi_V(X_i, X_{-i}) = P_V(X_i + X_{-i})X_i - C_V(X_i + X_{-i})X_i$$

Specification:

$$C_V(X) = \max\{c_0 - gX, 0\}$$

< □ > < □ > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The model

• Fuel:

- $C_F(x)$ cost to provide x by a filling station
- f is the cost of a filling station
- Total filling cost:

$$C_F(\frac{X}{K})K + fK$$

Specification:

$$C_F = \frac{c_F}{2} x^2$$

• The minimum efficient scale x_m : $C'_F(x_m) = (C_F(x_m) + f)/x_m$

$$x_m = \sqrt{rac{2f}{c_F}}, \ \bar{C}_F = \sqrt{2fc_F}$$

• Competition is pure and perfect: price taking and free entry.

• Welfare is:

$$W(X,K) = S(X) - r(K)X - C_V(X)X - C_F(X/K)K - fK$$
(1)

• It is not concave because of range anxiety:

$$W_{XX} < 0, W_{KK} < 0$$
 but $W_{XK} = (\beta - c_F X)/K^2$

- multiplicity of critical points
- and First Order Conditions are not sufficient for optimality

• First Order Conditions:

$$s'(X) - r(K) = C_V(X) + C'_V(X)X + C'_F(X/K)$$
(2)

$$-r'(K)X + \left[C'_F\left(\frac{X}{K}\right)\frac{X}{K} - C_F\left(\frac{X}{K}\right)\right] = f$$
(3)

gives

• Optimal quantity of stations for a given X:

$$K^{0}(X) = X \left[\frac{1}{f} \left(\frac{\beta}{X} + \frac{c_{F}}{2} \right) \right]^{1/2} = \frac{X}{x_{m}} \left[1 + \frac{2\beta}{c_{F}X} \right]^{1/2}.$$
 (4)

• Optimal quantity of cars for a given K:

$$X^{0}(K) = \max\left\{\frac{a-c_{0}-\beta/K}{b-2g+c_{F}/K}, 0\right\}.$$
(5)

it is null if K below $(a - c_0)/\beta$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- The optimum (X^*, K^*) solves the couple of FOCs
- Multiple solutions :
 - ▶ (0,0) is a local maximum
 - ► (X^{*}₋, K^{*}₋) is a saddle point
 - (X_+^*, K_+^*) is a local maximum

Proposition

As β increases the social optimum jumps from (X_{+}^{*}, K_{+}^{*}) to (0, 0). For small β , (X_{+}^{*}, K_{+}^{*}) is the optimum, and

- each station operates at a scale lower than the minimum efficient scale: X*/K* < x_m,
- an increase of β induces a reduction of the optimal quantity of vehicles, and an increase of the quantity of stations per vehicle.

17 / 28

17/28

- Two interacting markets: cars and fuel, gives two reaction function $K^r(X)$ and $X^r(K)$
 - ► Fuel is Textbook: price competition

 $p_F = C'_F(X/K)$

- Two interacting markets: cars and fuel, gives two reaction function $K^r(X)$ and $X^r(K)$
 - ▶ Fuel is Textbook: price competition and free-entry

$$p_F = C'_F(X/K) = [C_F(X/K) + f]/(X/K), \text{ so } K^r(X) = rac{X}{x_m}$$

- Two interacting markets: cars and fuel, gives two reaction function $K^r(X)$ and $X^r(K)$
 - ▶ Fuel is Textbook: price competition and free-entry

$$p_F = C'_F(X/K) = [C_F(X/K) + f]/(X/K), \text{ so } K^r(X) = rac{X}{x_m}$$

• Car producers compete à la Cournot with:

$$P_V(X,K) = rac{\partial S}{\partial X} - p_F = a - rac{eta}{K} - bX - p_F$$

イロト 不得下 イヨト イヨト 二日

18/28

- Two interacting markets: cars and fuel, gives two reaction function $K^r(X)$ and $X^r(K)$
 - Fuel is Textbook: price competition and free-entry

$$p_F = C'_F(X/K) = [C_F(X/K) + f]/(X/K), \text{ so } K^r(X) = rac{X}{x_m}$$

Car producers compete à la Cournot with:

$$P_V(X,K) = rac{\partial S}{\partial X} - p_F = a - rac{eta}{K} - bX - p_F$$

SO

$$P_V + P'_V \frac{X^r}{m} - C_V - C'_V \frac{X^r}{m} = 0$$

$$X^{r}(K) = \frac{m}{m+1} \frac{1}{b-g} \left[a - c_0 - \frac{\beta}{K} - p_F \right] = \frac{a - c_0 - \beta/K}{\frac{m+1}{m}(b-g) + c_F/K}$$

Proposition

There is a unique equilibrium at X = 0 and K = 0 if and only if

$$\beta > \frac{1}{4} \frac{m}{m+1} \frac{(a-c_0 - \bar{C}_F)^2}{x_m(b-g)}$$
(6)

イロト 不得 トイヨト イヨト 二日

19/28

Otherwise, there are three equilibria with $X \in \{0, X^E_-, X^E_+\}$ and $K = X/x_m$

- (0,0) and (X^E_+, K^E_+) are stable
- (X_{-}^{E}, K_{-}^{E}) is unstable
- with $0 < X_{-}^{E} < X_{+}^{E}$.

Figure: Market reaction functions and equilibria, for a = 5, b = 1, c = 1, g = 0.01, m = 10, $\beta = 5$, f = 0.1, $c_F = 2$

Figure: Market reaction functions and equilibria, for a = 5, b = 1, c = 1, g = 0.01, m = 10, $\beta = 5$, f = 0.1, $c_F = 2$

Figure: Market reaction functions and equilibria, for a = 5, b = 1, c = 1, g = 0.01, m = 10, $\beta = 0$, f = 0.1, $c_F = 2$

Figure: Market reaction functions and equilibria, for a = 5, b = 1, c = 1, g = 0.01, m = 50, $\beta = 0$, f = 0.1, $c_F = 2$

Optimal Policy

- Two issues:
 - lock-in at a Pareto dominated equilibrium
 - sub-optimality of the Pareto dominating equilibrium

Lemma: If several equilibria co-exist (X_{+}^{E}, K_{+}^{E}) Pareto dominates

- Policy should cross the tipping point K_{-}^{E} and ensure that $(X_{+}^{E}, K_{+}^{E}) = (X^{*}, K^{*})$
- Three Market Failures:
 - ▶ Imperfect competition (decreases with *m*)
 - ▶ Scale effects (decreases with *g*, increases with *m*)
 - "Indirect network effect" or range anxiety effect: unpriced benefits $\beta X/K$ (decreases with β)

Proposition

The optimum can be decentralized with a subsidy couple:

$$s_{K} = \frac{\beta X^{*}}{K^{*2}}$$

$$s_{V} = b \frac{X^{*}}{m} + g \frac{m-1}{m} X^{*}$$
(7)
(8)

• With an integrated Monopoly the optimum can be obtained setting

$$s_{\mathcal{K}} = 0$$
 and $s_{\mathcal{V}} = bX^*$

Proposition

If the regulator can only subsidize cars, the optimal subsidy on cars is

$$s_V^{SB} = \beta \frac{x_m}{X^{SB}} + b \frac{X^{SB}}{m} + g \frac{m-1}{m} X^{SB}$$

in which X^{SB} is larger than X^* and equals to $X^{SB} = \frac{1}{b-2g} \left[a - c_0 - \bar{C}_F \right]$ which is the optimal quantity of vehicles without range anxiety $\beta = 0$.

 \bullet First term corrects for underprovision of stations \simeq indirect network effects

Lemma

If the regulator can only subsidize filling stations,

$$s_{K}^{SB} = \beta \frac{X}{K^{2}} + \left(\frac{b}{m} + g \frac{m-1}{m}\right) \frac{X}{K^{2}} \frac{\beta + c_{F}X}{\frac{m+1}{m}(b-g) + c_{F}/K}$$

Illustration - FCEV

Deployment of FCEV (hydrogen car) in Germany:

- From a scenario by Mc Kinsey (2010) and Creti et al. (2017)
- $\bullet~{\rm We~get}~\beta$ and $c_{\rm F}$ to ensure consistency of the trajectory
- and cost figures are given.
- WTP a varies to reflect growth of the CO2 price and the market

FCEV car park in million units

Fig 1: TCO in €/km per year

Scenario	Take-off	Building-up	Expansion	Stationary
Social optimum				
X*	3 293	8 892	24 796	26 059
K*	20	39	86	90
Welfare (M€/yr)	.2	6.4	57.0	66.5
Oligopoly equilibrium				
m (exogenous)	1	2	10	10 000
X ^r	-	4 539	21 610	25 740
K ^r	-	13	61	73
Welfare loss (%)	100 %	36.1 %	2.0 %	.3 %
Integrated monopoly				
X ^m	-	4 224	12 049	13 002
K ^m	-	24	49	49
Welfare loss (%)	100 %	31.3 %	27.0 %	25.6 %

Table: The social optimum and the market equilibria

Scenario	Take-off	Building-up	Expansion	Stationary
Combined subsidies				
$s_{\mathcal{K}} \ (\in / \text{ station})$	39 574	29 217	16 758	16 209
$s_V ~(\in / ~ car)$	659	911	608	1
of which market power	642	867	484	1
Integrated monopoly				
<i>s</i> _V (€/ car)	659	1 778	4 959	5 212
Cars only				
<i>s</i> _V (€/ car)	-	1 122	679	68
X ^{SB}	(3 775)	9 038	24 827	26 086
K ^{SB}	(11)	26	70	74
Welfare loss wrt FB	100 %	6.0 %	.3 %	.3 %
Welfare return of sub	-	19.0 %	5.8 %	.7 %
Infrastructure only				
<i>s</i> _K (€/ car)	-	38 791	22 934	16 216
X ^{SB}	-	5 894	22 065	26 056
K ^{SB}	-	35	85	90
Welfare loss wrt FB	100 %	13.7 %	1.3 %	.0 %
Welfare return of sub	-	104 %	22 %	13 %

Table: The optimal subsidies 《 다 > 《 문 > 《 R > % R >

- Infrastructure is critical but does not require much subsidies
- Cars are heavily subsidized both in FB and SB
 - massive transferts to firms (and adopters)
 - notably with an integrated monopoly
 - due to scale effects that should eventually disappear
- To subsidize only infrastructure is not very effective
 - but return per subsidy is important (consistent with empirical results of Pavan et al., 2015)
 - range anxiety factor β likely to be under-calibrated
 - sensitivity analysis to be done

- Critical role of infrastructure explains both multiplicity of extrema and equilibria
- The market failure associated is a positive externality of stations on consumers
 - micro-foundation of indirect network effects
- Optimal policy should both cross the tipping point and correct the equilibrium
- Both infrastructure and vehicles should be subsidized
- The model allow to assess the contribution of each market failure
- Extensions: costly public funds, dynamic, entry in car manufacturing